
Parallel I/O
Katie Antypas

HPC Consultant
Lawrence Berkeley National Laboratory

ASTROSIM Summer School
July 19-23rd 2010

Thanks to Rob Ross, Rob Latham from ANL and
John Shalf for use of slides.

Outline

Day 1
•  Review of storage systems and parallel file

systems
•  Parallel I/O interfaces

–  MPI-IO
–  Parallel I/O libraries

•  Lustre Striping
•  Best practices and recommendations
Day 2 / Lab Session
•  HDF5 parallel I/O library

1

NERSC is the Primary Computing
Center for DOE Office of Science

• NERSC serves a large population
– Approximately 3000 users, 400 projects, 500 codes
– Science-driven
– Many collaborative international
 projects

• Focus on “unique” resources
– Expert consulting and other services
– High end computing systems
– High end storage systems

• NERSC is known for:
– Strong user services
– Large and diverse user workload

2

Physics Math + CS Astrophysics
Chemistry Climate Combustion
Fusion Lattice Gauge Life Sciences
Materials Other

NERSC Systems for Science

3

Large-Scale Computing System
Franklin (NERSC-5): Cray XT4

•  9,532 compute nodes; 38,128 cores
•  ~25 Tflop/s on applications; 356 Tflop/s peak

Hopper (NERSC-6): Cray XE6
•  Phase 1: Cray XT5, 668 nodes, 5344 cores
•  Phase 2: > 1 Pflop/s peak, (Summer 2010)

HPSS Archival Storage
•  40 PB capacity
•  4 Tape libraries
•  150 TB disk cache

NERSC Global
 Filesystem (NGF)
Uses IBM’s GPFS
1.5 PB; 5.5 GB/s

Clusters
 105 Tflops
 combined
Carver

•  IBM iDataplex cluster
PDSF (HEP/NP)

•  Linux cluster (~1K cores)
Cloud testbed

•  IBM iDataplex cluster

Analytics

•  Euclid (512 GB
shared
memory)

•  GPU testbed
(48 nodes)

Supernova Core-Collapse

4

PIs: S. Woosley (UCSB),
A. Burrows (Princeton)

Objective: First principles
understanding of supernovae of all
types, including radiation transport,
spectrum formation, and
nucleosynthesis.

Accomplishments: VULCAN: NERSC
core collapse runs explain
magnetically-driven explosions in
rapidly-rotating cores.

• First 2.5-D, detailed-microphysics
radiation-magnetohydrodynamic
calculations; first time-dependent 2D
rad-hydro supernova simulations
with multi-group and multi-angle
transport.

NERSC: 2M hours alloc in 2009; 2.2M used
so far, requesting additional.

Implications: Will help us confront
one of the greatest mysteries in high-
energy physics and astrophysics --
the nature of dark energy.

The exploding core of a massive star. a), b), and c)
show morphology of selected isoentropy, isodensity
contours during the blast; (d) AMR grid structure at

coarser resolution levels."

a b

c d

High Energy Physics: Palomar
Transient Factory

5

Objective: Process, analyze & make
available data from Palomar Transient Sky
survey (~300 GB / night) to expose rare and
fleeting cosmic events.

Accomplishments: Automated software for
astrometric & photometric analysis and
real-time classification of transients.

 • Analysis at NERSC is fast enough to
reveal transients as data are collected.

 • Has already uncovered more than 40
supernovae explosions since Dec., 2008.

 • Uncovering a new event about every 12
minutes.

NERSC:
 • 40k hours + 1M HPSS in 2009; Use of

NERSC NGF + gateway

Implications: First survey dedicated solely
to finding transient events.

.

PI: P. Nugent (LBNL)

Two manuscripts submitted to Publications of the
Astronomical Society of the Pacific

PTF project data flow

Getting bigger all the time
•  User I/O needs

growing each year in
scientific community

•  For our largest users
I/O parallelism is
mandatory

•  I/O remains a
bottleneck for many
users

Images from David Randall, Paola Cessi, John Bell, T Scheibe

Why is Parallel I/O for science
applications difficult?

•  Scientists think about
data in terms of their
science problem:
molecules, atoms,
grid cells, particles

•  Ultimately, physical
disks store bytes of
data

•  Layers in between, the
application and
physical disks are at
various levels of
sophistication

Images from David Randall, Paola Cessi, John Bell, T Scheibe

Parallel I/O:
A User Perspective

•  Wish List
–  Write data from multiple processors into a single file
–  File can be read in the same manner regardless of the

number of CPUs that read from or write to the file. (eg.
want to see the logical data layout… not the physical
layout)

–  Do so with the same performance as writing one-file-per-
processor

–  And make all of the above portable from one machine to
the next

•  Inconvenient Truth: Scientists need to
understand about I/O in order to get good
performance

I/O Hierarchy Slide

Storage Device

Parallel File System

MPI-IO Layer

High Level IO Library

Application

Storage Media

Magnetic Hard
Disk Drives

Solid State Storage Devices (flash)

Magnetic Tape

Magnetic Hard Disk Drives

Source: Popular Science, Wikimedia Commons

Some definitions

•  Capacity (in MB, GB, TB)
– Measured by areal density
– Areal density = track density *

linear density
•  Transfer Rate (bandwidth) –

MB/sec
– Rate at which a device reads

or writes data
•  Access Time (milli-seconds)

– Delay before the first byte is
read

Access Time

•  T(access) = T(seek) + T(latency)
–  T(seek) = time to move head to correct track
–  T(latency) = time to rotate to correct sector

•  T(seek) = ~10 msec
•  T(latency) = 4.2 msec

•  T(access) = 14 msec!!
•  How does this compare to clock to to

to clock speed?
Image from Brenton Blawat

Why isn’t a hard drive faster?

•  Hard disk drives operate at about 30-100s
MB/sec

•  Areal density getting higher
•  Improved magnetic coating on platters
•  More accurate control of head position on

platter
•  Rotational rates slowly increasing
•  What’s the problem?

• Electronics supporting the head can’t keep up with
increases in density
• Access time always a fixed cost

Disk Transfer Rates over Time

Thanks to R. Freitas of IBM Almaden Research Center for providing much of the data for this graph.

15 Slide from Rob Ross, Rob Latham at ANL

RAID

•  Individual disk drives obviously not fast enough for
supercomputers

•  Need parallelism
•  Redundant Array of Independent Disks

•  Different configurations of RAID offer various levels
of data redundancy and fail over protection

Solid State Storage

•  More reliable than hard disk drives
–  No moving parts
–  Withstand shock and vibration

•  “Non-volatile” retain data without power
•  Slower than DRAM memory, faster than hard disk

drives
•  Relatively cheap

File Systems

18

What is a File System?

•  Software layer between the Operating System and
Storage Device which creates abstractions for
–  Files
–  Directories
–  Access permissions
–  File pointers
–  File descriptors

•  Moving data between memory and storage devices
•  Coordinating concurrent access to files
•  Managing the allocation and deletion of data blocks

on the storage devices
•  Data recovery

J.M. May “Parallel IO for High Performance Computing

From disk sectors to files

•  File systems allocate space in “blocks”,
usually multiples of disk “sector”

•  A file is created by the file system on one or
more unused blocks
–  The file system must keep track of used and

unused blocks
–  Attempts to allocated nearby blocks to the same

file
•  “inodes” are special blocks that contain a list

of all the blocks in a file.

Inodes store Metadata

•  Data about data
•  File systems store information about files

externally to those files.
•  Linux uses an inode, which stores

information about files and directories (size
in bytes, device id, user id, group id, mode, timestamps,
link info, pointers to disk blocks, file size…)

•  Any time a file’s attributes change or info
is desired (e.g., ls –l) metadata has to be
retrieved from the metadata server

•  Metadata operations are IO operations
which require time and disk space.

File Systems

•  Your laptop or desktop has a file system,
referred to as a “local file system”

•  A networked file system allows multiple
clients to access files
–  Treats concurrent access to the same file as a

rare event
•  A parallel file system builds on the concept

of a networked file system
–  Efficiently manages hundreds to thousands of

processors accessing the same file concurrently
–  Coordinates locking, caching, buffering and file

pointer challenges
–  Scalable and high performing

J.M. May “Parallel IO for High Performance Computing

There are a number of
parallel file systems

•  These are three parallel file systems widely used on
the top 500 supercomputers

GPFS

Generic Parallel File System
Architecture

Compute
Nodes

Internal
Network

Storage
Hardware --
Disks

Disk controllers -
manage failover

I/O Servers

External
Network -
(Likely FC)

MDS I/O I/O I/O I/O I/O I/O I/O

Galera Luster Configuration in /work
(my best guess)

O
ST

O

ST

O
ST

O

ST

O
ST

O

ST

O
ST

O

ST

O
ST

O

ST

O
ST

O

ST

O
ST

O

ST

O
ST

O

ST

O
ST

O

ST

O
ST

O

ST

O
ST

O

ST

O
ST

O

ST

O
ST

O

ST

O
ST

O

ST

O
ST

O

ST

O
ST

O

ST

O
ST

O
ST

O

ST

O
ST

O
ST

O

ST

O
ST

O

ST

O
ST

 ?? OSS
144 OSTs

Galera Compute and Interactive Nodes

“interconnect”

6 DDN
48 LUN

FC Network

…

…

Peak I/O system
bandwidth is !
~5-7 Gbyte/sec."

Fault Tolerance
and Parallel File Systems

Combination of hardware and software ensures
continued operation in face of failures:

–  RAID techniques hide disk failures
–  Redundant controllers and shared access to storage
–  Heartbeat software and quorum directs server failover

26 Slide from Rob Ross, Rob Latham at ANL

File Buffering and Caching

•  Buffering
–  Used to improve performance

•  File system collects full blocks of data before transferring
data to disk

•  For large writes, can transfer many blocks at once

•  Caching
–  File system retrieves an entire block of data, even if all

data was not requested, data remains in the cache
•  Can happen in many places, compute node, I/O

server, disk
•  Not the same on all platforms
•  Important to study your own application’s

performance rather than look at peak numbers

Data Distribution
in Parallel File Systems

28 Slide Rob Ross, Rob Latham at ANL

Locking in Parallel File Systems
Most parallel file systems use locks to manage concurrent access
to files
• Files are broken up into lock units, (also called blocks)
• Clients obtain locks on units that they will access before
I/O occurs
• Enables caching on clients as well (as long as client has a lock, it
knows its cached data is valid)
• Locks are reclaimed from clients when others desire access

29

If an access touches any
data in a lock unit, the
lock for that region must
be obtained before access
occurs.

Slide from Rob Ross, Rob Latham at ANL

Locking and Concurrent Access

30 Slide from Rob Ross, Rob Latham at ANL

Question -- what would happen if writes were smaller than lock units?

3D (reversing the decomp)

Logical!

Physical!

Slide from John Shalf

3D (block alignment issues)

720 bytes! 720 bytes!

Logical!

Physical!
8192 bytes!

• Block updates require mutual exclusion!
• Block thrashing on distributed FS!
• I/O efficiency for sparse updates! (8k block required for 720 byte I/O operation!
• Unaligned block accesses can kill performance! (but are necessary in practical I/O
solutions)!

Writes not aligned !
to block boundaries!

Slide from John Shalf

Small Writes

How will the parallel file system perform with
small writes (less than the size of a lock unit)?

33

Now from the User’s point of
view

34

Why you might need to do I/O

•  Checkpoint/Restart files
–  System or node could fail; protect your

application so you don’t have to start from the
beginning

–  Need to run longer than wall clock time allows

•  Analysis files
•  Visualization files
•  Out-of-core algorithm:

Serial I/O

0 1 2 3 4

File

processors

•  Each processor sends its data to the
master who then writes the data to a
file

5

•  Advantages
• Simple
• May perform ok for very small IO sizes

•  Disadvantages
• Not scalable
• Not efficient, slow for any large number
of processors or data sizes

•  May not be possible if memory
constrained

Parallel I/O Multi-file

0 1 2 3 4

File File File File File

processors

• Advantages
• Simple to program
• Can be fast -- (up to a point)

• Disadvantages
• Can quickly accumulate many files
• Hard to manage
• Requires post processing
• Difficult for storage systems, HPSS, to handle many small files
• Can overwhelm the file system with many writers

5

File

• Each processor writes its own data to a separate file

Flash Center IO Nightmare…
•  Large 32,000 processor run on LLNL BG/L
•  Parallel IO libraries not yet available
•  Intensive I/O application

–  checkpoint files .7 TB, dumped every 4 hours,
200 dumps

•  used for restarting the run
•  full resolution snapshots of entire grid

–  plotfiles - 20GB each, 700 dumps
•  coarsened by a factor of two averaging
•  single precision
•  subset of grid variables

–  particle files 1400 particle files 470MB each
•  154 TB of disk capacity
•  74 million files!
•  Unix tool problems
•  Took 2 years to sift though data, sew files together

Parallel I/O Single-file

0 1 2 3 4

File

processors

• Advantages
• Single file
• Manageable data

• Disadvantages
• Shared files may not perform as well as one-file-per-processor
models

5

• Each processor writes its own data to the same file
using MPI-IO mapping

Reduced Writers to Single-file

0 1 2 3 4

File

processors

• Best performance when # of writers is multiple of (1-4) # of IO nodes
• Subset of processors writes data to single file
• Advantages

• Single file; manageable data
• Better performance than all tasks writing for high concurrency jobs

• Disadvantages
• This is a pain to program
• User shouldn’t have to do this!

5

Users don’t need to do this at the application layer

Stressing the I/O System
•  Computational science applications exhibit

complex I/O patterns that are unique, and how
we describe these patterns influences
performance.

•  Accessing from large numbers of processes
has the potential to overwhelm the storage
system. How we describe the relationship
between accesses influences performance.

•  In some cases we simply need to reduce the
number of processes accessing the storage
system in order to match number of servers
or limit concurrent access.

41 Slide from Rob Ross, Rob Latham at ANL

Access Patterns

42

Access Patterns

Memory

File

Contiguous

Memory

File

Contiguous in
memory, not in file

Memory

File

Contiguous in file,
not in memory

Memory

File

Dis-contiguous
Mem

File

Bursty
Ti

m
e

Memory

File

Out-of-Core

I/O in Astrophysics

•  What are the common
characteristics of
astrophysics applications?
–  Often have LOTS of data

•  Use all memory per core
•  Dump checkpoint and analysis files

–  Usually grid based
•  Structured/unstructure/adaptive

grids
•  Can often collect data into large

buffers and chunks
•  Regularly ordered, can be

contiguous
•  Possible non-contiguous data with

3d decomposition

–  Particles data can be irregular
–  Some applications are out of

out of core
Images from Dr. Nordhaus, Prof Burrows, Prof. Lamb, Dr. Chen

MPI-IO

45

What is MPI-IO?

•  Parallel I/O interface for MPI programs
•  Allows users to write shared files with a

simple interface
•  Key concepts:

–  MPI communicators
–  Derived data types
–  File views

•  Define which parts of a file are visible to a given
processor

•  Can be shared by all processors, distinct or partially
overlapped

–  Collective I/O for optimizations

46

47

Independent and Collective I/O

•  Independent I/O operations specify only what a single process will
do
–  Independent I/O calls obscure relationships between I/O on other

processes
•  Many applications have phases of computation and I/O

–  During I/O phases, all processes read/write data
•  Collective I/O is coordinated access to storage by a group of

processes
–  Collective I/O functions are called by all processes participating in I/O
–  Allows I/O layers to know more about access as a whole, more

opportunities for optimization in lower software layers, better
performance

P0 P1 P2 P3 P4 P5 P0 P1 P2 P3 P4 P5

Independent I/O Collective I/O

Slide from Rob Ross, Rob Latham at ANL

MPI-IO Optimizations

•  Collective Buffering
–  Consolidates I/O requests from all procs
–  Only a subset of procs (called aggregators) write

to the file
–  Key point is to limit writers so that procs are not

competing for same I/O block of data
–  Various algorithms exist for aligning data to block

boundaries
–  Collective buffering is controlled by MPI-IO hints:

romio_cb_read, romio_cb_write, cb_buffer_size,
cb_nodes, cb_config_list

48

When to use collective buffering

•  When to use collective buffering
–  The smaller the write, the more likely it is to

benefit from collective buffering
–  Large contiguous I/O will not benefit from

collective buffering. (If write size is larger than I/O
block then there will not be contention from
multiple procs for that block.)

–  Non-contiguous writes of any size will not see a
benefit from collective buffering

49

MPI-IO Summary

•  MPI-IO is in the middle of the I/O stack
•  Provides optimizations typically low

performing I/O patterns (non-contiguous I/O
and small block I/O)

•  You could use MPI-IO directly, but better to
use a high level I/O library

50

High Level Parallel I/O
Libraries
(HDF5)

51

What is a High Level Parallel I/O
Library?

•  An API which helps to express scientific
simulation data in a more natural way
–  Multi-dimensional data, labels and tags, non-

contiguous data, typed data
•  Typically sits on top of MPI-IO layer and

can use MPI-IO optimizations
•  Offer

–  Simplicity for visualization and analysis
–  Portable formats - can run on one machine and

take output to another
–  Longevity - output will last and be accessible

with library tools and no need to remember
version number of code

IO Library Overhead

Data from Hongzhang Shan!

Very little, if any overhead from HDF5 for one file per
processor IO compared to Posix and MPI-IO

Common Storage Formats

•  ASCII:
–  Slow
–  Takes more space!
–  Inaccurate

•  Binary
–  Non-portable (eg. byte ordering and types sizes)
–  Not future proof
–  Parallel I/O using MPI-IO

•  Self-Describing formats
–  NetCDF/HDF4, HDF5, Parallel NetCDF
–  Example in HDF5: API implements Object DB model in portable file
–  Parallel I/O using: pHDF5/pNetCDF (hides MPI-IO)

•  Community File Formats
–  FITS, HDF-EOS, SAF, PDB, Plot3D
–  Modern Implementations built on top of HDF, NetCDF, or other self-describing

object-model API

Many NERSC
users at this level.
We would like to

encourage users to
transition to a

higher IO library

But what about performance?
•  Hand tuned I/O for a particular application and

architecture will likely perform better, but …
•  Purpose of I/O libraries is not only portability,

longevity, simplicity, but productivity
•  Using own binary file format forces user to

understand layers below the application to get
optimal IO performance

•  Every time code is ported to a new machine or
underlying file system is changed or upgraded,
user is required to make changes to improve IO
performance

•  Let other people do the work
–  HDF5 can be optimized for given platforms and file

systems by library developers
•  Goal is for shared file performance to be ‘close

enough’

HDF5 Data Model

•  Groups
–  Arranged in directory

hierarchy
–  root group is always ‘/’

•  Datasets
–  Dataspace
–  Datatype

•  Attributes
–  Bind to Group & Dataset

•  References
–  Similar to softlinks
–  Can also be subsets of

data

“/”!
(root)!

“Dataset0”!
type,space!

“Dataset1”!
type, space!

“subgrp”!

“time”=0.2345!

“validity”=None!

“author”=Jane Doe!

“Dataset0.1”!
type,space!

“Dataset0.2”!
type,space!

“date”=10/24/2006!

Example HDF5 file output
HDF5 "example_file.h5" {
GROUP "/" {
 DATASET "hamiltonian_000" {
 DATATYPE H5T_IEEE_F64LE
 DATASPACE SIMPLE { (10) / (10) }
 DATA {
 (0): 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
 }
 }
 DATASET "hamiltonian_001" {
 DATATYPE H5T_IEEE_F64LE
 DATASPACE SIMPLE { (10) / (10) }
 DATA {
 (0): 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
 }
 }
 DATASET "hamiltonian_002" {
 DATATYPE H5T_IEEE_F64LE
 DATASPACE SIMPLE { (10) / (10) }
 DATA {
 (0): 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
 }
 }
}

The HDF Group

•  HDF5 is maintained by a non-profit company called
the HDF Group

•  Example code and documentation can be found
here:

•  http://www.hdfgroup.org/HDF5/

Recommendations
•  Think about the big picture

–  Run time vs Post Processing trade off
–  Decide how much IO overhead you can afford
–  Data Analysis
–  Portability
–  Longevity

•  H5dump works on all platforms
•  Can view an old file with h5dump
•  If you use your own binary format you must keep track of

not only your file format version but the version of your
file reader as well

–  Storability

File Striping on Lustre File
System

60

What is File Striping?

•  Lustre file systems are made up of an
underlying set of parallel I/O servers
–  OSSs (Object Storage Servers) - nodes dedicated to

I/O connected to high speed torus interconect
–  OSTs (Object Storage Targets) software abstraction

of physical disk (1 OST maps to 1 LUN)
•  File is said to be striped when read and write

operations access multiple OSTs concurrently
•  Striping can increase I/O performance since

writing or reading from multiple OSTs
simultaneously increases the available I/O
bandwidth

Default Striping on Galera /work

•  3 parameters characterize striping pattern of a file
–  Stripe count

•  Number of OSTs file is split across
•  Default is 1

–  Stripe size
•  Number of bytes to write on each OST before cycling to next OST
•  Default is 1MB

–  OST offset
•  Indicates starting OST
•  Default is round robin across all requests on system

I/O
Servers

OSTs

OSS 0 OSS 1 OSS 2 OSS 3 OSS 4 OSS 5 OSS 23

0,24 1,25 2,26 3,27 4,28 5,29 23,47

A Stripe Count of 2

•  Pros
–  Get 2 times the bandwidth you could from using 1 OST
–  Max bandwidth to 1 OST ~ 350 MB/Sec
–  Using 2 OSTs ~700 MB/Sec

•  Cons
–  For better or worse your file now is in 2 different places
–  Metadata operations like ‘ls -l’ on the file could be slower
–  For small files (<100MB) no performance gain from striping

I/O
Servers

OSTs

OSS 0 OSS 1 OSS 2 OSS 3 OSS 4 OSS 5 OSS 23

0,24 1,25 2,26 3,27 4,28 5,29 23,47

What’s the best stripe count
for a file system?

•  Depends on the work load of the system and size of disks
•  Balance

–  Should work reasonably well for most users
•  Protection

–  Each OST is backed up by a physical disk (LUN)
–  Stripe count of 1 leave us vulnerable to single user writing out

huge amount of data filling the disk
•  Striping of 2 is a reasonable compromise, although not

good for large shared files

I/O
Servers

OSTs

OSS 0 OSS 1 OSS 2 OSS 3 OSS 4 OSS 5 OSS 23

0,24 1,25 2,26 3,27 4,28 5,29 23,47

One File-Per-Processor IO with
Stripe Count of 1

•  Use all OSTs but don’t add more
contention than is necessary

4 OSTs

OSS 0 OSS 1 OSS 2 OSS 3 OSS 4 OSS 5

Interconnect Network

0 1 2 3 4 5 40,000

OSS 19

Shared File I/O with Default Stripe
Count 2

•  All processors writing shared file will write to 2 OSTs
•  No matter how much data the application is writing, it won’t

get more than ~700 MB/sec (2 OSTs * 350 MB/Sec)
•  Less sophisticated than you might think - no optimizations

for matching processor writer to same OST
•  Need to use more OSTs for large shared files

OSS 0 OSS 1 OSS 2 OSS 3 OSS 4 OSS 5

Torus Network

0 1 2 3 4 5 38,000

OSS 24

Shared File I/O with Stripe Count 48

•  Now Striping over all OSTs
•  Increased available bandwidth to application

OSS 0 OSS 1 OSS 2 OSS 3 OSS 4 OSS 5

0 1 2 3 4 5 38,000

OSS 24

Interconnect Network

Changing the Default Stripe Count
•  A number of applications will see benefits from

changing the default striping
•  Striping can be set at a file or directory level
•  When striping set on a directory: all files created in that

directory will inherit striping set on the directory

•  Stripe count - # of OSTs file is split across
•  Stripe size - # bytes written on each OST before cycling

to next OST
•  OST offset - indicates starting OST

lfs setstripe <directory|file> -c stripe-count –s stripe-size –o offset

Example: change stripe count to 10
lfs setstripe mydirectory -c 10

Striping Summary
•  Galera Default Striping

–  Stripe count 1 (data not split over OSTs)
–  Stripe size - 1MB
–  OST offset - round robin starting

•  One File-Per-Processor I/O or shared files
< 10 GB
–  Keep default, stripe count 1

•  Medium shared files: 10GB – 100sGB
–  Set stripe count ~4-20

•  Large shared files > 1TB
–  Set stripe count to 20 or higher, maybe all OSTs?

•  You’ll have to experiment a little

Best Practices

•  Do large I/O: write fewer big chunks of data
(1MB+) rather than small bursty I/O

•  Do parallel I/O.
–  Serial I/O (single writer) can not take advantage of

the system’s parallel capabilities.
•  Stripe large files over many OSTs.
•  If job uses many cores, reduce the number

of tasks performing IO
•  Use a single, shared file instead of 1 file per

writer, esp. at high parallel concurrency.
•  Use an IO library API and write flexible,

portable programs.

NERSC is enabling new high quality science across
disciplines, with over 1,600 refereed publications last year

71

Cover Stories from NERSC Research

MPI Poll
(Steering Friday’s Parallelism Lecture)

A.  ASTROSIM 2010 is the first time I’ve
been exposed to MPI applications

B.  I use MPI, but don’t know many
details

C.  I have used MPI extensively, but
would be interested in learning more

D.  If I have to hear one more MPI talk, I’ll
go have coffee instead

OpenMP

A.  What’s OpenMP?

B.  I’ve used/tried OpenMP, but don’t
know many details

C.  I write hybrid MPI/OpenMP codes
with fluency.

Extra

74

Common Physical Layouts
For Parallel I/O

•  One File Per Process
–  Terrible for HPSS!
–  Difficult to manage

•  Parallel I/O into a single file
–  Raw MPI-IO
–  pHDF5 pNetCDF

•  Chunking into a single file
–  Saves cost of reorganizing data
–  Depend on API to hide physical layout
–  (eg. expose user to logically contiguous array even though it

is stored physically as domain-decomposed chunks)

Data Sieving Write Operations

Buffer

Memory

File

Data Sieving Write Transfers

! Data sieving for writes is
more complicated
–  Must read the entire region first
–  Then make changes in buffer
–  Then write the block back

! Requires locking in the
file system
–  Can result in false sharing

(interleaved access)

76 Slide from Rob Ross, Rob Latham at ANL

Noncontiguous I/O Optimization:
Data Sieving

•  Data sieving is used to
combine lots of small
accesses into a single
larger one
–  Remote file systems (parallel or

not) tend to have high latencies
–  Reducing # of operations

important

•  Similar to how a block-
based file system interacts
with storage

•  Trade off - read big data
chunks, but need more
memory

Buffer

Memory

File

Data Sieving Read Transfers

77 Slide material from Rob Ross, Rob Latham at ANL

78

Collective I/O Optimization:
Two-Phase I/O

•  Problems with independent, noncontiguous access
–  Lots of small accesses
–  Independent data sieving reads lots of extra data, can exhibit

false sharing
•  Idea: Reorganize access to match layout on disks

–  Single processes use data sieving to get data for many
•  Second “phase” redistributes data to final destinations
•  Two-phase writes operate in reverse (redistribute then I/O)

Two-Phase Read Algorithm

p0 p1 p2 p0 p1 p2 p0 p1 p2

Phase 1: I/O Initial State Phase 2: Redistribution

Slide from Rob Ross, Rob Latham at ANL

